- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Boylan-Kolchin, Michael (2)
-
Chaboyer, Brian (2)
-
Boudreaux, Emily M. (1)
-
Goebel-Bain, Rowan (1)
-
Slaughter, Catherine (1)
-
Weisz, Daniel (1)
-
Weisz, Daniel R (1)
-
Ying, Jiaqi (Martin) (1)
-
Ying, Jiaqi Martin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Globular clusters (GCs) provide statistically significant coeval populations of stars spanning various evolutionary stages, allowing robust constraints on stellar evolution model parameters and ages. We analyze eight old Milky Way GCs with metallicities between [Fe/H] = −2.31 and −0.77 by comparing theoretical isochrone sets from the Dartmouth Stellar Evolution Program to Hubble Space Telescope (HST) observations. The theoretical isochrones include uncertainties introduced by 21 stellar evolution parameters such as convective mixing, opacity, diffusion, and nuclear reactions, capturing much of the quantifiable physics used in our code. For each isochrone, we construct simulated color–magnitude diagrams (CMDs) near the main-sequence turnoff region and apply two full-CMD-fitting methods to fit HST Advanced Camera for Surveys data across a range of distances and reddening and measure the absolute age of each GC from the resulting posterior distribution, which accounts for uncertainties in the stellar models, observations, and fitting method. The resulting best-fitting absolute ages range from ≈11.5 to 13.5 Gyr, with a typical error of 0.5–0.75 Gyr; the data show a clear trend toward older ages at lower metallicities. Notably, distance and reddening account for over 50% of the uncertainty in age determination in each case, with metallicity,αabundance, mixing length, and helium diffusion being the most important stellar physics parameters for the error budget. We also provide an absolute age–metallicity relation for Milky Way GCs.more » « lessFree, publicly-accessible full text available June 26, 2026
-
Ying, Jiaqi; Chaboyer, Brian; Boudreaux, Emily M.; Slaughter, Catherine; Boylan-Kolchin, Michael; Weisz, Daniel (, The Astronomical Journal)Abstract The absolute age of a simple stellar population is of fundamental interest for a wide range of applications but is difficult to measure in practice, as it requires an understanding of the uncertainties in a variety of stellar evolution processes as well as the uncertainty in the distance, reddening, and composition. As a result, most studies focus only on the relative age by assuming that stellar evolution calculations are accurate and using age determinations techniques that are relatively independent of distance and reddening. Here, we construct 20,000 sets of theoretical isochrones through Monte Carlo simulation using the Dartmouth Stellar Evolution Program to measure the absolute age of the globular cluster M92. For each model, we vary a range of input physics used in the stellar evolution models, including opacities, nuclear reaction rates, diffusion coefficients, atmospheric boundary conditions, helium abundance, and treatment of convection. We also explore variations in the distance and reddening as well as its overall metallicity andαenhancement. We generate simulated Hess diagrams around the main-sequence turn-off region from each set of isochrones and use a Voronoi binning method to fit the diagrams to Hubble Space Telescope Advanced Camera for Surveys data. We find the age of M92 to be 13.80 ± 0.75 Gyr. The 5.4% error in the absolute age is dominated by the uncertainty in the distance to M92 (∼80% of the error budget); of the remaining parameters, only the total metallicity,αelement abundance, and treatment of helium diffusion contribute significantly to the total error.more » « less
An official website of the United States government
